PRINCETON UNIV. F’25 c0s 521: ADVANCED ALGORITHM DESIGN
Lecture 10: Linear Programs and LP Rounding

Lecturer: Huacheng Yu

One of the running themes in this course is the notion of approzximate solutions. Of
course, this notion is tossed around a lot in applied work: whenever the exact solution
seems hard to achieve, you do your best and call the resulting solution an approximation.
In theoretical work, approximation has a more precise meaning whereby you prove that the
computed solution is close to the exact or optimum solution in some precise metric.

1 Quick Refresher on Linear Programming

A linear program has a set of variables (in the example below, x1, ...,z ), a linear objective
(in the example below, ¢- ¥), and a system of linear constraints (in the example below,
Aji - < by, for all j, and ; > 0 for all ). A linear program in “standard form” therefore
takes the following form:
max Z CiTj
i

s.t. ZA]ZIEZ < bj, Vj

g > 0, V.

Recall that it is OK to have variables which aren’t constrained to be non-negative,
equalities instead of inequalities, min instead of max, etc. (and all such linear programs are
equivalent to one written in standard form — if you're unfamiliar with LPs, you may want
to prove this as a quick exercise). Linear programs can be solved in weakly polynomial
time via the Ellipsoid algorithm (which we’ll see later in class). “Weakly polynomial time”
means the following:

e You are given as input an n-dimensional vector ¢, and an m x n matrix A. Each entry
in ¢ and A will be a rational number which can be written as the ratio of two b-bit
integers.

e Therefore, the input is of size poly(n,m,b). A weakly polynomial time algorithm is
just an algorithm which terminates in time poly(n,m,b) (and the Ellipsoid algorithm
is one such algorithm).

e A stronger stance might be to say that the input is really of size poly(n,m), but
you acknowledge that of course doing numerical operations on b-bit integers will take
time poly(b). A strongly polynomial-time algorithm would be one which performs
poly(n, m) numerical operations (and then the algorithm will also terminate in time
poly(n, m,b), because each operation terminates in time poly(b). A major (major,
major) open problem is whether a strongly poly-time algorithm exists for solving
linear programs. Note that the Ellipsoid algorithm does more numerical operations if
the input numbers have more bits, it’s not just that each operation takes longer.



2 Integer Programs

In discrete optimization problems, we are usually interested in finding 0/1 solutions. Using
LP one can find fractional solutions, where the relevant variables are constrained to take
real values in [0, 1]. Sometimes, we can get lucky: you write an LP relaxation for a problem,
and the LP happens to produce a 0/1 solution. Now, you know that this 0/1 solution is
clearly optimal: not only is it the best 0/1 solution, it’s even the best [0, 1] solution. We
will see on example of this phenomenon in PSet 1, where we use a linear program to find
the minimum s-¢ cut in a graph.

Another important polynomial-time problem that admits a linear program which exactly
solves the integral problem is maz-weight bipartite matching. Given a bipartite graph G =
((A, B), E) with edge weights w : E — Rx>q (i.e., the vertices in G can be partitioned into
sets A and B and each edge in E is of the form (a,b) for some vertex a € A and b € B),
the max-weight bipartite matching problem is to find a subset of edges M C E that do not
share a vertex while maximizing ) _.,, w(e). We won’t prove it in class but the optimal
value of the following linear program returns the max-weight matching:

max Z w((a,b))-x(a,b)

(a,b)EE

0< 2y <1 Y(a,b) € E
2 b(ap)eb Tab) <1 Va € A
Za:(a,b)eE Z(a,b) <1 Vb € B.

Needless to say, we don’t expect this magic to repeat for NP-hard problems. So the
LP relaxation yields a fractional solution in general. Then we give a way to round the
fractional solutions to 0/1 solutions. This is accompanied by a mathematical proof that the
new solution is provably approximate.

The rest of the lecture discusses different LP rounding schemes.

3 Deterministic Rounding (Weighted Vertex Cover)

First we give an example of the most trivial rounding of fractional solutions to 0/1 solutions:
round variables < 1/2 to 0 and > 1/2 to 1. Surprisingly, this is good enough in some settings.

Definition 1. The Weighted Vertex Cover Problem is the following:
e Input: a graph, G = (V, E) and a weight w; for each nodei € V.

e Qutput: a vertex cover, which is a subset S CV such that every edge e € E contains
at least one vertex of S (that is, there does not exist an e = (u,v) € E such thatu ¢ S

and v ¢ S).

!There are (at least) two ways to see this, both of which we won’t prove. But these are some buzzwords
in case you want to look it up yourself. One way is to use the Birkhoff-Von Neumann Theorem and to treat
the fractional matching as a doubly-stochastic matrix, and the integral matching as a permutation matrix.
The other way is to consider writing a flow network where the max-flow is equal to the maximum fractional
matching, and then using the flow integrality theorem.



o Goal: Output a set S minimizing D ;g w;.
We first observe that Weighted Vertex Cover can be solved by an Integer Program.

observation 1. The following Integer Program is equivalent to Weighted Vertex Cover.
min Zz W; T4
x; € {0, 1} Vi
T+ T >1 V{’L,j} cF.

Proof. The first constraint guarantees that every 4 is either in S (z; = 1) or not in §
(x; = 0). The second constraint guarantees that every edge e is covered (because at least
one of its endpoints is in S). The objective computes the weight of nodes in S. 0

We now want to consider the following LP relaxation of this Integer Program:
min ZZ W;T;
0<z; <1 Vi
i t+x; > 1 v{i,j} € E.
Let OPT} denote the optimum value of this linear program, and let VCp;, denote the
weight of the optimum vertex cover.

observation 2. OPTy < VCpiy.

Proof. This immediately follows as every feasible solution to the integer program defining
VCin is also a feasible solution to the LP relaxation. Therefore, the LP can only be
better. O

We now consider the following simple rounding algorithm:

Definition 2 (Deterministic VC Rounding). Solve the LP relazation. For each i such that
x; > 1/2, add i to S. For each i such that x; < 1/2, keep i out of S.

Lemma 1. Deterministic VC' Rounding outputs a vertex cover.

Proof. By definition of the LP relaxation, we know that x; + 2; > 1 for every edge {3, j}.
Therefore, at least one of x; or z; is > 1/2, and therefore at least one of {4, j} must be in
S. Therefore, every edge is covered. O

Lemma 2. The weight of the set output by Deterministic VC Rounding is at most 20PTy <
2V Cuin.

Proof. Every element i of S contributed at least w;/2 to OPTy, and contributes w; to the
weight of S. OPT can only be larger than ), g w;/2 because maybe other i not in S have
x; > 0. O

Thus we have constructed a vertex cover whose cost is within a factor 2 of the op-
timum cost. In particular, observe that we can guarantee that our vertex cover is a 2-
approximation, even though we don’t know the quality of the optimum.

Ezercise: Show that for the complete graph, Deterministic VC Rounding indeed com-
putes a set of size no better than 2 - OPTy.



Remark: This 2-approximation was discovered a long time ago, and despite myriad attempts
we still don’t know if it can be improved. Using the so-called PCP Theorems, Dinur and
Safra showed (improving a long line of work) that 1.36-approximation is NP-hard. Khot
and Regev showed that computing a (2 — €)-approximation is UG-hard, which is a new form
of hardness popularized in recent years.

4 Simple randomized rounding: MAX-2SAT

Simple randomized rounding is as follows: if a variable x; is a fraction then toss a coin
which comes up heads with probability x;. If the coin comes up heads, make the variable 1
and otherwise let it be 0. The expectation of this new variable is exactly x;. Furthermore,
linearity of expectations implies that if the fractional solution satisfied some linear constraint
¢’z = d then the new variable vector satisfies the same constraint in the expectation. But,

we may need to do more work to understand.
Definition 3. The MAX2SAT Problem is the following:

o Input: n boolean variables x1,...,x,, and m clauses. j clauses are in Jy, and contain
a single literal of the form x; or T;. The remaining m — j clauses are in Jo and are
in the form yV z, where both y and z are equal to some literal or its negation (we are
guaranteed that y and z are from different variables).”

e Output: An assignment of each variable to either TRUE or FALSE.

e Goal: Maximize the number of satisfied clauses (i.e. the clauses that evaluate to
true).®

observation 3. The following Integer Program is equivalent to MAX2SAT. We have a
variable zj for each clause j € J1 U Ja, where the intended meaning is that it is 1 if the
assignment decides to satisfy that clause and 0 otherwise. Below, y;1 is shorthand for the
literal in clause j (Similarly for y;o.)

max E Zj

jeJ

ti, fi € {0,1} Vi
ti=1-f; Vi
2z <1 Vi€ JiUJz
Yi1 = %5 Vi e
Y1 + Yj2 > 2 Vj € Jo

Proof. The first constraint guarantees that each z; is either true (¢; = 1) or false (¢; = 0).
The second guarantees that each clause can be satisfied at most once. The third constraints
guarantee that each clause can only be satisfied if at least one of its literals is true. O

2If not, then either both literals are the same, in which case it is just in Ji, or the clause is always true.
3Random aside: if instead we wish to ask whether it is possible to satisfy all clauses, then there is a
simple poly-time algorithm. But satisfying the maximum number of clauses is NP-hard.



Now, we again want to consider the LP relaxation:

max E Zj

jed

1>, fi >0 Vi
ti=1—f; Vi
25 <1 Vi€ iU Jy
Yj1 = zj Vi€
Y1+ Y2 = %j Vi€ Jo

Definition 4 (M2S Randomized Rounding). The M2S Randomized Rounding algorithm
first solves the LP relaxation. Then, independently for each i, it sets variable x; to true
with probability t;.

Again, let OPT denote the optimal solution to the LP relaxation. We claim that M2S
guarantees a 3/4-approximation:

Theorem 3. The expected number of clauses satisfied by the output of M2S is at least
30PTy/4.

Proof. We will analyze each clause j separately, and show that clause j is satisfied with
probability at least 3z;/4. The theorem will then follow by linearity of expecation. We
handle the cases of clauses in J; and Jy separately.

Lemma 4. Let j € Ji. Then the probability that clause j is satisfied in M2S at least z;.

Proof. Because j € Ji, it contains only one literal. If that literal is x;, then x; is set to true
with probability ¢; > z;. If that literal is Z;, then x; is set to false with probability f; > z;.
Therefore, the lemma holds. O

Lemma 5. Let j € Jo. Then the probability that clause j is satisfied in M2S is at least
3Zj/4.

Proof. Wlog, say that clause j is x, V zs (idential reasoning holds if one/both of these

variables is a negation, swapping ¢ for f below as necessary). Then the probability that

clause j is satisfied is 1 — (1 — 2,.)(1 — x5) = 2 + 5 — 25 > Ty + T5 — (7, + 15)2 /4.2
Now, consider the case when x, + 5 < 1. Then we have:

o z; <z, + x4 (directly from the LP).
o v+ x5 — (v, +15)2/4 > 1 + 15 — (2 +15) /4 = 32, + 34) /4.

These two facts together imply that the clause is satisfied with probability at least 3z;/4.
Consider now the case when z, + x5 > 1. Then we have:

e z; <1 (directly from the LP).

“To see this last inequality, observe that (z,+zs)* — (z, —zs)? = 4zs2,, and therefore .z, < (z,+z5)%/4.



o v+ 15— (v, +15)%2/4 > 3/4, as 1, + x5 < 2.7

These two facts together imply that the clause is satisfied with probability at least 3z;/4.
We’ve now shown that for all clauses, the probability it is satisfied is at least 3z;/4.

This completes the proof, by linearity of expectation.

Remark: This algorithm is due to Goemans-Williamson, but the original 3/4-approximation
is due to Yannakakis. The 3/4 factor has been improved by other methods to 0.94.

5 Integrality Gap

An important parameter in LP-relaxations is call the integrality gap.

Definition 5. Integrality gap is the maximum ratio between the optimum of LP and the
optimum of IP.

This is usually an upper bound on how good we can approximate the solution using LP
relaxation and rounding. This is because the rounding algorithm takes a fractional solution,
and outputs an integral solution, and we argue that the integral solution is at most ¢ times
worse than the fractional, for some parater ¢ > 1. If the LP relaxation has a large integrality
gap, meaning that we may reduce the optimum by a large factor ¢ in the relaxation, then
it implies that any rounding algorithm must also lose the same factor ¢ in worst case. In
the other words, we cannot design a rounding algorithm that outputs an integral solution
that is < ¢ times worst.

The other way to understand integrality gap is that it can be viewed as how close the
IP and LP are. The integer program is exactly what we wanted to solve. We could not do
it efficiently in general, so we solve the LP relaxation instead. If there is a large integrality
gap, then this means that the two programs are not that similar, hence, solving the LP is
not super useful in giving a good solution to IP.

6 More Clever Rounding: Job Scheduling

Here, we’ll consider a more clever rounding scheme that also starts from an LP relaxation
due to Shmoys and Tardos. Consider the problem of scheduling jobs on machines. That
is, there are n jobs and m machines. Processing job i on machine j takes time p;;. Your
goal is to finish all jobs as quickly as possible: that is, if 2;; = 1 whenever job 7 is assigned
to machine j (and 0 otherwise), minimize M(Z) = max;{)_, zijpij}, M(Z) refers to the
makespan of ¥, and we will keep this definition even when # € [0, 1]™ (instead of {0, 1}™™).

To see this last claim, take the derivative with respect to (z, + zs). The derivative is 1 — (z, + 5)/2,
which is 0 at 2, +xs = 2, and positive on [1,2]. Therefore, the minimum on [1, 2] is achieved at z, + s = 1,
which is 3/4.



This lends itself to a natural LP relaxation:

min T
Tij S [0, 1] VZ,]

J
T> Zpijl'ij vj
i

That is, we want to minimize the maximum load on any machine, subject to every job
being assigned (at least) once. Unfortunately, this LP has a huge integrality gap. That
is, the best fractional solution might be significantly better than the best integral solution.
Why? Maybe there’s only one job with pi; = 1 for all machines j. Then the best fractional
solution will set z1; = 1/m for all machines and get 7' = 1/m. But clearly the best integral
schedule takes time 1. The problem is that we’re asking for too much: if there’s a single
job that itself takes time t > T' to process on every machine, we can’t possibly hope to get
a good approximation to 1" with an integral schedule. Instead, we’ll consider the following
modified relaxation, which is parameterized by ¢ > 0, and we’ll refer to as LP(t).

min T
Tij S [0, 1] Vi,j

J
T > piyzij Vi
%
Tij = 0 Vi, 7 such that Dij > t

The problem with the previous example was that a single job had processing time 1, but
T = 1/m and we asked for a new schedule with processing time O(1/m). Instead, we’ll ask
for one of time T+ t. Note that if the optimal schedule has total processing time P, then
the maximum time it takes to process any job is some t < P. So if we solve the above LP
with this given ¢, the optimal schedule will be considered, and we’'ll have T'< P and t < P
for a 2-approximation. This is the main idea for why this approach works, but we’ll specify
everything in more detail below.

Definition 6 (ST Rounding Algorithm). Given as input a fractional solution & to LP(t):
For each machine j, let wj = [Y, xi]. Make a bipartite graph with jobs on the left and
machines on the right. Make [w;| copies of the machine j node, call them ji, ... s Jw;- Make
a single node on the right for each job.

For each machine j, sort the jobs in decreasing order of pij, so that pi1y; > p(2)j--- >
P(n)j- Place edges from jobs to machine j in the following manner:

1. Initialize current-node ¢ := 1. Initialize current-job i := 1. Initialize job-weight
w = x(1);. Initialize node-weight-remaining r := 1.

2. While (i <n):



(a) If w <r, add an edge from job (i) to j. of weight w. Update r :=r — w, update

ii=1i+1, w:=m); (the newly updated i). Keep c:= c.

(b) Else, add an edge from job (i) to ¢ of weight r. Update w := w—r, update r := 1,
update c ;== c+ 1. Keep 1 :=i.

In other words, starting from the slowest jobs, we put edges totalling weight x;; from
job i to (possibly multiple) nodes for machine j. We do so in a way such that the slowest
jobs are on the earliest-indexed copies, and that each copy has total incoming weight at
most 1 (actually all but the last copy have incoming weight exactly one, and the last copy
has weight at most one). Now our rounding algorithm simply takes any matching with n
edges, ignoring the weights (i.e. matches every job somewhere) in this graph. We first need
to claim that such a matching exists, then claim that the total processing time is not too
large.

Proposition 6. In the bipartite graph defined by ST Rounding Algorithm, there exists a
matching of size n.

Proof. Because the total edge weight coming out of job ¢ into a copy of machine j is x;;
for all 7, j, the total edge weight coming out of job ¢ in total is 1. Moreover, the total edge
weight coming into each copy of machine j is at most 1. Therefore, we have constructed a
fractional matching of size n. Therefore, there is also an integral matching of size n (this is
the same fact discussed in Section 2, which we didn’t prove). O

The above argues that the algorithm is well-defined (note that the proof is not “com-
plete” in the sense that we didn’t prove that fractional matchings imply integral matchings.
But it’s “formal” in the sense that the proof is complete with this outside theorem). Now
we need to argue that the total processing time is good.

Theorem 7. The integral solution output by ST Rounding Algorithm has makespan at most
M(Z) +t.

Proof. We’ll show that for all machines j, the total processing time of jobs assigned to j
is at most M (%) + t (which is equivalent to the proposition statement). Note first that
every job with an edge to node j. has a lower processing time than any job with an edge
to node j.—1. So let T, denote the processing time of the slowest job with an edge to j..
Then we have M(%) > >, zijpij > > u’oTe. This is because the jobs assigned to node
je account for Zl z;j = 1, and each have p;; > T.;q1. Finally, observe that 17 < ¢, as by
definition we didn’t allow any jobs to be placed on machines where their processing time
exceeded t. So M(Z) +t > ) Tc. Finally, observe that the maximum possible processing
time of the unique job assigned to node j. is T, so the total processing time of machine j
is Y, Te < M(Z) +t. O

This is a really influential rounding scheme that accomplishes much more than just what
is proved here — see the original paper and follow-ups for details. We conclude by using
this rounding scheme inside a full approximation algorithm.

Definition 7 (ST Approximation Algorithm). The ST Approximation Algorithm does the
following:



1. Initialize M = oo.
2. Initalize § = 0.
3. Fori=1ton, and j =1 to m:

(a) Solve LP(p;j), and let T' be its optimal value, and T be its fractional assignment.
(b) If T +pij < M:
i. Update M :=T + p;;.
it. Update y := 2.
4. Round ¥ to an integral solution i* using ST Rounding Algorithm and output i*.

Theorem 8. ST Approzimation Algorithm satisfies Zi,j y;;pij < 20PT.

Proof. Let i/, j" denote the maximum processing time that is used in the optimal integral
schedule, and let i*, 7* denote the round where M is set in ST Approximation Algorithm.
Then we have:

Zy;‘j pij < M < OPT + pyryr < 20PT.
i?j
The first inequality follows from Theorem 7. The second follows by definition of the for

loop, and because the optimal integral schedule is one feasible schedule for LP(p;;/). The
final inequality follows as OPT > p;/;/, as machine ' takes at least time p;;» to process. [



	Quick Refresher on Linear Programming
	Integer Programs
	Deterministic Rounding (Weighted Vertex Cover)
	Simple randomized rounding: MAX-2SAT
	Integrality Gap
	More Clever Rounding: Job Scheduling

